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1. Introduction

We consider a control system given by
(1.1) = Az + Bu, u € Ugg

with A linear and generating a semigroup S - or, more generally (permitting non-
autonomous A(-)), a fundamental solution S(t,s) (0 <s <1t).
We consider two possible forms of perturbation of the system (1.1): first

(1.2) z=Az+ g+ Bu, w € Ugg
with the affine perturbation g taken from some given set § of functions and second
(1.3) z = Az + Fz + Bu, U € Ugg

where F is to be a nonlinear operator of Nemytsky type:

(1.4) ¢ = [Fz](t) := f(¢,z(2)).

Our object is to reduce the analysis of the effect of the quasilinear perturbation (1.3)
on the approzimately reachable set K to the (presumably simpler) analysis of the
effect of affine perturbations (1.2) as g ranges over a set § for which we will have
Fz € § in (1.3). In particular, we seek conditions under which K is invariant under
the perturbation: (1.1) — (1.3).

We have already investigated the corresponding invariance of the (exactly) reach-
able set in a sequence of papers [7], [8], [10], [11] and the work presented here repre-
sents an extension of this work in two directions: the consideration of approximate
rather than exact reachability and the consideration of control sets which do not form
a linear space (with linear B). The arguments used here put this work in the setting
of ”the fixed point approach to controllability” and we refer to [4] and its references
for further historical discussion of this approach.

2. Formulation

Let us first specify the setting for the problem. The state space X is to be a
Banach space which, for simplicity, we take to be reflexive (although it would be
sufficient to require only RNP, the Radon-Nikodym Property, cf., [5] ). We assume
that A () generates a fundamental solution (evolution system) S - i.e.,

(f)  S(t,s) is a bounded linear operator on X
with ||S(t,s)]| <M for 0< s <t < T
(¢7)  S(t,8)S(s,r) =S(t,r) for 0<r<s<t<T;
(vic)  S(t,8)f — ¢ as t— s+ for £ € X;
(2.1) (tv)  dS(t,s)¢/dt = A(s)¢ for t=s and £ € D = D(A(s)).



This permits us to introduce the notion of a mild solution of (1.1) or (1.2) [6]: we set

(2.2) z(t) := S(t,0)z(0)

(This assumes an initial condition specifying z(0) € X.) and define a linear map

(2.3) L:v—y with y(t):= /otS(t,s)v(s) ds

for suitable v(-) so that with w := Bu we have:

[Z 4+ Lw] is the mild solution of (1.1),

[z + L(g + w)] is the mild solution of (1.2).
In this formulation, (1.3) corresponds to the nonlinear integral equation (abstract
Volterra equation of second kind):

t

2(t) = 2(t) + [ S(t,9)[f(s,(s)) + w(s)] ds
or, equivalently, to the operator equation:
(2.4) z=72Z+LFz+ Lw

with w := Bu, u € Ugq.

Until one specifies the function spaces involved this is purely formal but we note
now that, although we refer for convenience to (1.1), (1.2), (1.3), we will always be
interpreting ‘solution’ in the present sense: as ‘mild solution’ and through (2.4). We
also make, now, our first basic observation: neither B nor u € U,4 (nor their individual
properties) can be relevant to any of (1.1), (1.2), (1.3), but only w := Bu € W,
where
(2.5) Waa := {w := Bu for some u € Uq}.

One other reduction is immediately available. We can consider =2z and,
defining

) = ( ()+ ()) F(c! +2) = Fa,

we see that z is a solution of (2.4) if and only if z! is a solution of: T = LF Tzl + Lw
— which, of course, is just (2.4) with Z = 0 and the modified nonlinearity. There is
thus no loss of generality in taking Z = 0, corresponding to the specification z(0) =0

(26)  Flal = fT( 1

as initial condition; henceforth we do take Z = 0 and simply write F for FT as above.
We now introduce (reflexive) Banach spaces V,W compatible with X in the sense
that the set V N X is dense both in V and in X with

WEVNX, 1 20, i, 25=0=2cVNX



and similarly for [W,X]. It will thus be possible to make suitable extensions or
restrictions of S(¢,s) so, e.g., the formal definition (2.3) may make sense for V- or
W-valued functions. We set X := C([0,T] — X) and introduce spaces V and W of
V- and W-valued functions, respectively, on [0, T]. Our underlying set of ‘solvability
hypotheses’ is:

(Hy)

(!) L:W—X and L:V — X are continuous (with suitable
interpretation of S(t,s) in (2.3)); we write Ly or Ly
where it is desirable to make the distinction explicit.

(17) For each w € W there is a unique ¢ € V such that
(2.7) g =Fz for £:=Lyg+ Lyw

so z € X is the (unique) solution of (2.4).
(¢37) The well-defined map G=Gyg: W -V :wr—g
given by (ii) is continuous and compact.

Our present formulations of (1.1), (1.2), (1.3) are, respectively:

(2.8) z=Lyw (w € Waa),
(2.9) z=Lyg+Lyw (w€ Wa,g€g),
(2.10) t=LyGw +Lyw =:Lyw (w € W,4)

where W,q is now taken to be a (specified) subset of W and § is a specified subset of
V.

REMARK: In this paper we will work with (H;) as an abstract hypothesis. We
note, however, that [10] provides four alternate sets of more concrete conditions on
X,W,V,8(-), f(--) under which one can verify (H;). For convenience of reference we
present these here, converted to our present notation. For this, we take V, W to have
the form

(2.11) V:=I*(0,T] = V), W:=LF(0,T]— W)

and introduce another possible space Y compatible with X. We assume
1<p,p<oo; 1<p<p;

p+1/q=1/p'+1/¢d =1; 1/p+1/q,1/p'+1/¢d <1+1/p

and, for non-negative scalar functions on [0,T]:
pv € Lq,PW € LQ,vﬁV S Lq,ﬁW € Lq-',a € Lp)pY € Lla

assume that:



(C1)
(i) IS(t,8)[lvax < pv(t —s), [IS(Es)llwox < pw(t—s),
1S s)lvoy < pv(t —s), [IS(E,8)llwoy < bw(t — s);

() S(9) = S,y oxs [(tr9) — (¢ o) wox < ¢
for0<s<t'—e,t' <t<Twithe=¢(h) —O0ash:=t—t'— 0;

(iii) [f(tn)lv < a(t) + Blnly- (F:=p/p< 1),
|S(t’s)[f(s’ 77) - f(sa 77')”1’ < pY(t - 3)|77 — nlly.

To (C}) we may adjoin:
(C2) Let any one of the following hold:

(i) For some Banach space Z such that ¥ < Z is a compact embedding,
assume that for § > 0 there exists M; such that

l]S(t,t—5)||Z_.y SMg for 5StST

(i) For some Banach space Z such that Z < Y is a compact embedding,
strengthen (C; — 1) by requiring:

IS(t, s)||lw-z < Aw(t — ) (Z replacing Y).

(iii) For some Banach space Z such that Y — Z is a compact embedding,
strengthen the growth condition in (C; — ¢1¢) by requiring

17t O)lv < a(t) + Bl¢l;

with F:=p/p<1 (Z replacing Y).

(iv) Take Y = X reflexive in (C}); for some Banach space Z such that
X =Y < Z is a compact embedding, assume that for each y > 0 there exists
oy € LP for which

¢z <= 1f(t,¢)lv < aft).



THEOREM 1: Let X, W,V be as above and assume (C). Then one has (H; — 1)
and (Hy—1%) as well as the continuity of G = Gg : W — V and the growth condition

(2.12) lglv := |Guw|y < C, + Cijwl}, (F<1).

If, in addition, we assume (C;), then G is also compact. Le.,

PROOF: See [10] for details. We note here only that (C;—17) is used to give (H;—1) and
that (C1—1,17) give a solution of (2.4) initially in Y := L?([0,T] — Y) from which one
obtains g := f(-,z(-)) € V by Krasnoselskii’s Theorem [2]. These arguments are fairly
standard, using convolution estimates from the form of (C; —1). One then hasz € X
from z = Lg + Lw and (H; — 7). The four alternative arguments for compactness of

G from (C;) use the Aubin Compactness Theorem [1], the Arzela-Ascoli Theorem,
and an argument from [9]. O

3. Formulation (Continued)

In the previous section we formulated the ‘dynamics’ of the problem, introducing
the relevant spaces and the operators Ly, Ly, G to obtain (2.8), (2.9), (2.10). In this
section we wish to consider the various reachable and approximately reachable sets.

Let E be the evaluation map at the terminal time:

E: X > X:z()r— £:=2z(T)
and, for brevity, let T := EL or, more specifically,

T, : W—-X:w+— ELw:=[Lw|(T),
Ty : V- X:g9g+— ELg:=[Lg|(T),
(3.1) Ty = TyG+T,: W - X: wr— £:=Ez such that (2.4).
Clearly, in view of (H; —¢) and the definition of X, the linear operators E, T,, Ty are
continuous and with (H; — 477) so is Tg. The (exactly) reachable sets for (1.1),(1.2),
and (1.3) are then K, := K,(Waa), K, := Ky(Waa), and Ky := Kgp(Waa), respectively,
where for subsets W, C W we define:
Ko(W.) == TW.:={ELw:w e W},
Ks(We) == {E(Lg+Lw): we W.}="Tg+ K,(Ws),
(3.2) Kr(W.) = {Ez:(24)for we W} ={Trw: we W}
The approximately reachable sets for (1.1), (1.2), (1.3) are then the corresponding
X-closures: K,, Kz, Ky, respectively (or K,(W.a), etc.). We will set
G« = GWaa:={9€V :9= Guw for some w € Wy},
(3.3) Vo = {gév:/zg=}zo}={g€V:Tg+}zo=lZo}.



Note that V, = V,(Waa) does not depend on F. Our basic reachability hypothesis
will be

(Hz) G« CV,, ie., Ky=K, foreach g = Gw (w € W,a),

which is easily seem to be equivalent to
(3.4) ¢+ Tg, ¢E—Tge K, foreach ¢ € K,, g€ §..

We note that when K, = —K, (e.g., if w € Woa => —w € W,4) we need only check
that K, = Tg + K, C K, for each g € §. and that when W, is the whole space W

the condition (3.4) reduces to a range inclusion: R(TyG) C R(T,).
Actually, we will use the inclusion

(3.5) K, C K, for each g € G.( i.e., £ +Tge K, for £ € K,,g € G

but will be forced to strengthen the reverse inclusion K, C K, (i.e., £ — Tg € K, for
€ € K,, g € §.) to obtain the desired invariance result: Kg = K,. Half of this result
is easy.

LEMMA 1: Assume (H; — 1) and (3.5). Then Kg C K.

PROOF: Clearly it is sufficient to show ¢ € K, for each ¢ = Ty w € K. We
have ¢ = Ex with £ = LFz + Lw for some w € W,4 so, setting ¢ := Gw, we have
z=Lg+ Lw so £ = Tg+ Tw € K,. By (3.5) we have £ € K, as desired. O

Our efforts, then, must go to showing: K, C K.

For comparison we note that our previous work obtained essentially the result:

THEOREM 2: Let W,4 be the whole space W. Assume (H;) and (2.12); assume
that R(Tv) C R(T,) [equivalent to: K; = K, for each g € V]. Then Ky = K,, i.e.,
the exactly reachable set is then invariant under the perturbation by F.

PROOF: We give only a very brief sketch here. Following an argument much as for
Lemma 1, the proof (fixing ¢ € K,) showed that £ € Ky by demonstrating existence
of a fixpoint for the map: W — W given by

(3.6) CG:wr—g:=Gwr— ¥ :=Cyg
where the map C = C; : ¥V — W was such that
(3.7) W = Cg = Tg+ Tw = &.

Once one has shown that C is continuous and that there is a suitable (bounded,
closed, convex) set in W,q = W invariant under CG, then the Schauder Fixpoint
Theorem applies to give the desired result. Here, one obtains C of linear growth
since Waq is the whole space. (It is an important point that C depends only on the
range inclusion R(Tv) C R(T,) and not at all on F.) Thus, existence of an invariant
ball follows from (2.12). O



Our intention here is to use an essentially similar argument. We make the second
basic observation: for present purposes we may not only fix £ (arbitrary ¢ € K,) but
also € (arbitrary ¢ > 0) and, taking C = C¢, in (3.7), weaken (3.7) to require only
that
(3.8) =Cg =€ Wag, |{—[Tg+ Td]|x <e.

One easily sees that the existence of such @ € W4 (for each ¢ € K,,e > 0) is precisely
equivalent to the inclusion K, C K,; which forms part of our basic hypothesis (H;);
given (H;) and the compactness of G it is not too difficult to construct C = Cg,
continuous giving (3.8) for each g € G.. Unfortunately, without strengthening the
condition K, C K; we cannot obtain a growth rate for C = C; . which, with (2.12),
gives a bounded invariant set (Under the strong assumption that Eg, is precompact
in X we do, however, have Theorem 6, below.)

A second difficulty is that the Schauder Theorem requires that the invariant set
be closed and convex and we would prefer to admit the possibility that W,; be nei-
ther closed nor convex. We may be able to escape the necessity of imposing such a
condition directly on W,4. We make the third basic observation: that if we can find
any set W' C W such that

(v) Ke(W") € Kg(Waa) = K,
(3.9) (i5) ¢e Ky (W)

then ¢ € K. Thus, if we could find such a set W' for each £ € K,, then we would
have K, C K¥ so, with Lemma 1, we would have the desired invariance Ky = K,. In
proving (3.9 -ii) it is convenient, as noted, to have W' bounded, closed, and convex
(but possibly dependent on ¢).

The boundedness will depend on restriction to an invariant ball but we are led to
ask when we can find a (large enough) closed convex set W' for which (3.9 -7) holds.
We note from [12] a setting in which we would have (3.9 -7) for W' = coW,4 (closed
convex hull in W). For any set W, of functions on [0,T] we say “W, has the segment
property” if
(SP) Wo, w1 € Wo => w, € W, for each s € (0,T)
where we define w, := {w; on [0, s); w, on [s,T]}.

(Actually, this can be modified to ask only that w, € W, for a dense set of s.)

THEOREM 3: Let W have the form L*([0,7] — W) with 1 < p < oo; suppose
W has the Radon-Nikodym property (e.g., W any reflexive Banach space). Define
L as above, using (2.1) and (2.3); assume (H;). Then for any W, C W we have
Ko(Wh) = Ko(W,) and Kg(W1) = Kp(W,) with W, := coW,.

PROOF: We refer to [12] for the details of the proof but comment on some con-
siderations in the argument. The setting in [12] takes S(--) to be a semigroup (i.e.,

A autonomous in (1.1), etc.) but one easily sees that the slightly greater generality
of (2.1) causes no problems.
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Most of the work in [12] went to show that: for any w,w’ € W, one can construct,
using (SP), a sequence {w} in W, for which w;, — ¥ := (w + w') /2 while Lw;, — L
in X. The specific assumptions imposed on F in [12] are unnecessary in the presence
of (H,): the compactness of G now gives gy := Gwy — § in V (for a subsequence)
so Lgr — L§ in X. Thus, =i := Lgy + Lwy — % := L§ + L and g = Fz, — F%
where § = Ga. It follows that & := Ty is the limit of {Tpw;} so & € Kg(W,)
whenever ¥ = (w + w')/2 for w,w' € W,. Repeating this gives Trw € Kg(W,) for
any W in W' := { finite convex combinations of W, with binary rational coefficients}
and, since W' is dense in oW, =: W; and Ty is continuous from W to X, this gives
Kr(W1) € Kg(W,) as desired. Considering F = 0 gives K,(W;) = K,(W,) as well. O

We finish this section with some observations about the structure of the set V,.

LEMMA 2: YV, is closed under addition and subtraction.

PROOF: Suppose ¢,¢' € V,. We first wish to show that K; C K, where g := g —¢,
Le., for any £ € K; and € > 0 that there exists @ € W,q with |€ — Tw| < . To start,
we have £ = Tg + Tw, = & — Tg' with & := Tg + Tw,. Since {; € K, and g € V,
gives K; C K,, there must be w; € W,y such that |£; — Tw;| < £/2. Now Tw; € K,
and ¢’ € V, gives K, C Ky = Ty+ K, so (Tw; —Tg') € K, and there must be ¥ € Wy
with |[Tw, — T¢'| — Tw| < /2. Since £ — Tw = (¢, — Twy) + (Twy — [T¢' + Tw)),
this gives | — Tw| < € as desired so & € K,. This shows Tg+ K, C K, for g =g —¢'.
Reversing the roles of g, ¢’ gives —Tg+ K, C K, or K, C K;. Combining gives K, = Kj
soge€ V,forg=9g—¢ €V, —V,, i.e., V, is closed under subtraction. Trivially,
0€Vysog' €V, gives —¢g' € V, whence g=g — (—¢') =g+¢'isin V, for g,¢' € V,,
i.e., V, is closed under addition also. O

Note that closure under addition shows that V, is always unbounded (except for
the trivial case: V, = {0}) so W,q must also be unbounded.

LEMMA 3: Suppose K, is convex. Then V, is a (closed) subspace of V.

PROOF: We need only show that V, is convex. Since we always take Ty continuous
it is obvious that V, is closed in V and, with convexity, Lemma 2 shows VY, is a
subspace.

Suppose, then, g is any convex combination of V, so § = X¢;g; with ¢; > 0,X¢; =
1,9; € V,. For any ¢ € K, we have T§ + £ = E¢;(Tg; + £€). As each g; € V, we have
each (Tg; + €) € K, so convexity of K, gives (Tg + &) € K,. This, for each ¢ € K,
gives Kz C K,. By Lemma 2 we have also —g = Y¢;(—g;) a convex combination of
V. so [T(—g) + &] € K, for each ¢ € K,, ie., &€ € [Tg + K,] = K;. Combining gives
Ko=KzsogeV, O

Note that K, will certainly be convex if W,q is convex or if (e.g., under the hy-
potheses of Theorem 3) there is any convex W; with K,(W;) = K,.
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4. Invariance

As noted above, we will rely on Lemma, 1 to show Ky C K, and will use a fixpoint
approach based on (a strengthened form of) the condition:

(Hy) K, Tg+ K,(W') foreach g€ {Gw:we W} =:4,

for some closed, convex set W' € W with Kg{W') C Ky in order to obtain the reverse
inclusion K, € Ky and so to obtain the desired invariance: Kgp = K,. Our first
assumption will be:

(4.1) There is a (closed) convex set W' C W
such that K, C K,(W') and Kg(W') C Kp.

Note that we have (4.1) with W' := ¢o(W,4) under the hypotheses of Theorem 3.
Note that the hypotheses (H}) just means that the set

(4.2) Clg) =C(g;¢,6) = {w e W' :[€ — [Tg + Tw||x < €}
is nonempty for each g € §' := GW' (for fixed ¢ € K,, € > 0); let
(4.3) v(g) =v(g; €,€) =1inf{|lwlw : we C(g;€,€)}.
(From (H}) we have v(g) < oo for each such g, £, ¢ but, if we set

(4.4) B(R) = B(R; ¢, €) == sup{v(Gw; ,¢) :w € W', jw[y < R}

for R > 0, then this might conceivably be infinite. In terms of this, however, we can
impose a condition under which the desired fixpoint argument will be available.

LEMMA 4: Assume (H;) and (Hj;) with W' as in (4.1). Fix £ € K,, € > 0 and
assume there is some R = R({,€) such that B(R;&,e) < R. Then there is some
w € W (with ||y < R) such that |§ — Tpw| < 2e.

PROOF: Let Wg be the closed convex set {w € W' : |w|y < R} and let Gp :=
{Gw : w € Wg}. Note that (i) Gg is precompact in V by (H; — 1¢) and (ii) Cr(g) :=
Wr N C(g; €,€) is nonempty for each g € Gg since v(g) < B(R) < R. By (i), we can
find a finite set {g; : j = 1,...,J} such that min,;{|g — g;|} < & for each g € Gr
where 6 := €/2||Ty|| and by (ii), we can find w; € Cg(g;) for each 5. A standard
construction gives a continuous partition of unity subordinate to the covering of Gg
by 26-balls centered at {g;}, i.e., continuous scalar functions p,; on V such that

p; >0, Lp;(g) =1 for g€ Gr, ©j(g) >0=|g—g;| < 26.

We now define C = C; . by
(4.5) Cyg := Lp;(9)w;.
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Since Wg is convex, this gives C : Gg — Wg. Clearly C is continuous and a simple
computation gives (3.9) with ¢ replaced by 2e, i.e.,

(4.6) |€ — [Tg + TCyq]| < 2¢ for every g € Gr.

(From (H; — 127) we have CG : Wg — Wg continuous and compact so, applying
the Schauder Fixpoint Theorem, there is a fixpoint @ € Wk, i.e., we have Cg = w
for § = Gw. Putting g = g gives Tg + TCg = TGw + Tw =: Typw so (4.6) gives
| — Trw| < 2¢ as desired. O

THEOREM 4: Assume (Hi), (3.5), and (Hj) with W' as in (4.1). Suppose, for
each £ € K, , € > 0, one were to have §(R; ¢,e) < R for some R = R({,€). Then
the approximately reachable set is invariant under the nonlinear perturbation F, i.e.,
Ky = K,.

PROOF: This is an immediate corollary of Lemma 4. One obtains (fixing &,¢)
some W = W, € W' such that |§ — Trw,| < 2¢. This, for each € > 0, gives £ =
lim.Tpw, € Kg. That, for each ¢ € K,, gives K, C Kg so K, ¢ Kg. Applying
Lemma 1 gives the reverse inclusion. [J

COROLLARY: Assume (Hy),(2.12),(3.5), and (H;) with W' as in (4.1). Suppose,
for each £ € K, and € > 0, one had a growth rate

(4.7) v(g) < Co+ Cilgl} for g € §'
where é’o,él,F depend on &,e but always with # < 1/F. Then one has invariance:
Ky = K.

PROOF: Substituting (2.12) in (4.7) gives

B(R) < C, + C4[C, + CLR"|" = O(R™) = o(R)

as 7f < 1. Hence one can always find R = R(¢, ¢) for which #(R) < R so the Theorem
applies. O

The difficulty with this, of course, is that one is unlikely to be able to verify a
condition such as (4.7) to enable one to restrict attention to some Wg. There are,
however, certain cases in which one can proceed.

Since we only consider v(g; &,,¢€) for &, € K, so &, = Tw,, we can introduce

v(&e) =ainf{|lw']w 1w € [w, — Wad], |- Tw'|<¢e}

)
and have v(g; Tw,,e) = 7(Tg,€). Observe that if we consider W,y = W, then scaling
gives D(AE,€) = Ap(€,e/)) so (4.7) is equivalent to requiring that

V(&) i=limsupeo infuen{e " wly : |E - T,w|x <}

should be bounded for £ € {Tg:g € §., |g]y bounded}. It is possible to show that
V! is actually a norm intermediate between the X-norm on K,( = 0) and the obvious
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induced norm: €|, := inf{|w] : Tw = €} on K,(§ = 1). Thus, the condition that
v¢(Tg) < oo is stronger than just requiring Tg € K, but is weaker than the exact
reachability condition Tg € K, of Theorem 2. We will not analyze ¢ directly but,
instead, will use the established theory of interpolation between Banach spaces (cf.,
e.g., [3])- ) )

THEOREM 5: Assume (H;) and suppose Kp(W) C Ky C K,. Assume (2.12) and
suppose that, for some § > 7, one has

(4.8) Tvg € X, for each g€V

where X is an interpolation space [X,, Xi]s with X; := K, (with the norm: |¢]; :=
inf{|lw|w : Tow = ¢ for £ € X; = K,) and X, := K, with the X-norm. Then one has
the invariance result: K, = Kg.

REMARK: The hypothesis (4.8) with 6 > 7 is somewhere between taking § = 0,
which just reduces to the (inadequate) hypothesis (H:), and taking § = 1 which is
equivalent to the exact reachability hypothesis [R(Ty) C R(T,) = K,] of Theorem
2. Note that it is easiest to obtain (4.8) if one takes V as small as possible consistent

PROOF: While there are various possible interpolation functors, the extremal
property of the K-functor (see, e.g., Theorem 3.9.1 of [3]) gives a uniform estimate:

(4.9) s K (s;€) < C|€ (s >0,¢ € Xp)
( C depending on the choice of |- |;) where

K(s;€) = inf{||x+sléil1: &+ & =¢ 6 € Xi}
(4.10) = inf{slw|ly + |- Tow|: we W}

Fixing € > 0, define
w(v) = w(v;e) = [C ™00 L1/e,

For any ¢ € X set v := |£|s and consider s = ¢/w in (4.9), (4.10) with w > w(v).
From (4.9) this gives K(s; £) < € so, from (4.10), there exists w € W such that

|€ — Tow|x <e, lwly < w.
Since we may take w arbitrarily close to w(v), this shows:
(4.11) inf{lwly : |¢€ - Tow| < e} < [Ce~(-Y/o (gl

for £ € X,.
Note that (4.8) implies, by the Closed Graph Theorem, continuity of T as a linear
operator from V to Xj, i.e., existence of a constant C such that |Tg|s < C|g|y. Now
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fix §, = T,w, € K, = X; and, letting £ = Ty in (4.11), note that |¢ — T,w| < ¢ if
and only if ¢, — [Tg + To(w, — w)]|x < € s0 w' := w, — w is in C(g;&,,€). (From
(4.11), w > w(|Tg|s) can be used to estimate w' so

v(g;€ore) = inf{|w'ly:w' =w, —w e C(g;&,¢)}
< wolw +inf{wlw : w, — w € Cg; &,,€)}
(4.12) < wolw + [Ce O[O g y]H/°

We recognize this as (4.7) with # = 1/6; the assumption § > 7 gives ¥ < 1/7. Thus the
Corollary to Theorem 4 applies to show K, C Ky and one has the desired invariance:
Kr =K,. O

COROLLARY: Suppose V, is any space for which T : V, — X is continuous and
V1 is any space for which the exact reachability condition: {Tg:g € V;} C K, holds.
Assume (H;) with V taken as Vy := [V,, V1]o for some 8 > 7; assume (3.5) and (2.12).
Then one has Ky = K,.

PROOF: Let T°be T : V, —» X, := K, and let T! be T : V; — X; := K,; the
latter is bounded by the Closed Graph Theorem since TV; C X;. Then interpolation
theory [3] gives boundedness of T? : Yy — X, := [X,, Xi]s and Theorem 5 applies. O

A similar but somewhat modified fixpoint argument provides our final result.

THEOREM 6: Assume (H; — ¢,77) and the continuity (but not necessarily the
compactness) of G; assume (3.5). For some W' as in (4.1) set §' := GW' := {Gw :
w € W'} and assume

(4.13) Ko © Ky(W') for each g € ¢,
(4.14) TG = {Tg:9€ §'}={TGw:w e W'} is precompact in X.

Then, one has cal Ky = calK,.

PROOF: By Lemma 1 we have Kz C K, and, as above, need only show ¢ € Ky
for each ¢ € K,. Fix &, € K, and note that (4.13) gives {, — TG :={&, —Tg:g €
G'} € Ko(W'). Let X, :=7¢0(¢ — TG') = & —¢o(TG') and note that X, is compact
by (4.14) and is contained in K,(W') since W' convex as in (4.1) gives K,(W') convex
and, of course, closed.

Given any € > 0, one can find a covering of X, by e-balls centered at {&; : j =
1,...,J} with each & € K,(W') N X, so there exist w; € W' such that T,w; = §;. As
in the proof of Lemma 4, we can find a continuous partition of unity subordinate to
this covering;:

0; >0, Zp;=1 on X,, pi(€) 0= |~ &| < e.

and then define C = C;, by
C¢ = Zp,(&)w;,
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noting that C¢ € W' for € € X, by the assumed convexity of W'. Clearly C : X, — W'
is continuous and, as earlier, a simple computation shows that

(4.15) € - TC¢| <e for £€X..
For any w € W' we have [§, — TGw] € X,] so the map:
(4.16) Er— w = C¢r— [§ — TGw]

is a continuous selfmap of the compact, convex set X,.
By the Schauder Fixpoint Theorem this map has a fixpoint € so, setting @ :=
C¢& € W' we have £ = ¢, — TGw. Using (4.15), we have

¢, — Trw|x = |¢ — [TGw + To]|x = | — Tw|x <e.

Since this is possible for each € > 0 we have ¢ € Kp(W') C Ky. Since that holds for
each £ € K, we have K, C Ky. O
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